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A rotated upwind discretization scheme is presented for the discretization of the
steady-state two-dimensional anisotropic drift-diffusion equation, taking into ac-
count the local characteristic nature of the solution. The notable features of the
algorithm lie in the projection of the governing partial differential equation onto two
orthogonal axes, to yield a vanishing mixed derivative term, and in the utilization
of the upwind flow of information. As a result the limiting behaviour of the ellip-
tic equation is preserved in the discretization. The scheme produces an M-matrix
which guarantees an oscillation free solution and which enables the discrete system
to be solved using standard iterative solvers. The method is illustrated by numerical
examples for which the analytical solutions are known.c© 1998 Academic Press

1. INTRODUCTION

This paper describes a new rotated monotone finite-difference scheme for solving the
two-dimensional, steady-state, anisotropic elliptic partial differential equation (PDE)

−A1(x, y)
∂2φ

∂x2
− A2(x, y)

∂2φ

∂x ∂y
− A3(x, y)

∂2φ

∂y2
+ A4(x, y)

∂φ

∂x
+ A5(x, y)

∂φ

∂y

+ A6(x, y) φ = 0 in Ä (1)

subject to a mixture of Dirichlet and Neumann boundary conditions. Here, theAi (i =
1, . . . , 6) are known functions of the independent variables defined on a domainÄ on
whose boundary∂Ä, the boundary conditions are prescribed. The coefficients of the second
derivative terms of the PDE, generally called diffusion coefficients, are given so that the PDE
represents an elliptic equation, i.e.,A2

2 − 4A1A3 < 0 at any point (x, y). For convenience,
it is assumed that the coefficientsA1(x, y) andA3(x, y) are of same sign and are positive.
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The linear source termA6(x, y) is also assumed positive so that the maximum principle
can be attained. The coefficients of the first derivatives, called drift velocity components,
convect the unknown dependent variableφ.

The above PDE arises in many branches of engineering physics. For example, when
a semiconductor device is subject to a magnetic field, the current density relations, and
hence, the current continuity equations for electrons and holes, become anisotropic by
virtue of the Lorentz force [1,2]. Similarly, in the presence of mechanical stress, carrier
transport in the semiconductor device becomes anisotropic by virtue of piezoresistance [3].
The anisotropic diffusion equation also governs flow in porous media, pertinent to reser-
voir simulation problems, as well as the transport of atmospheric gases [4,5]. The PDE (1)
is called the Hamilton–Jacobi–Bellman equation which governs the dynamics of any sto-
chastic optimal control problem when the underlying processes are driven by Brownian
motion [6].

In discretization of the PDE, we seek the resultant discrete system to be an M-matrix
so as to enable use of standard iterative algorithms based on Gauss–Seidel methods. In
addition, the M-matrix guarantees the discrete maximum principle. In the absence of a
source term, the maximum principle states that the maximum of the unknown dependent
variable occurs on the boundary and that the dependent variable does not take negative
values. If the discretization scheme does not preserve this property, then the solutions may
take negative values and oscillate, which may not be meaningful from both physical and
mathematical points of view [7,8]. To attain this maximum principle, the discrete set of
equations should satisfy the following properties [7,8]:

(1) Diagonal entries of all rows should be positive.
(2) Off-diagonal entries of all rows should be non-positive.
(3) Sum of entries of any row should be non-negative, but this sum should be positive

for at least one row.

If a discrete system satisfies the above conditions, the matrix is said to be an M-matrix,
the inverse of which contains only positive entries. Many numerical methods have been
proposed for the discretization of the PDE [9,10]. The presence of the mixed derivative
term limits the attaining of an M-matrix, although there are many schemes that satisfy
various stability criteria needed for an M-matrix. However, the schemes do not take into
account the special features of the PDE except its elliptic nature. In addition, the presence of
the first derivative terms imposes conditions on the mesh size to obtain an M-matrix using
central difference formulas. The usual upwind schemes to deal with the first derivative terms
do not accurately model the local characteristics of the PDE.

The objective of this work is to develop a rotated monotone discretization scheme for
the anisotropic elliptic PDE taking into account the local characteristic nature of the so-
lution to yield a resultant discrete system that is an M-matrix. There are two rotations in
this scheme. One rotation pertains to the projection of the diffusion part of the PDE along
the orthogonal axes so that the mixed derivative term vanishes in the new coordinate sys-
tem. The other rotation addresses the discretization of the convective derivative. Section 2
describes the numerical issues associated with the discretization of the mixed derivative
term in conjunction with a diffusion equation with constant but anisotropic coefficients.
The numerical issues can be overcome using a physically stable rotated monotone differ-
ence scheme. This is presented in Section 3. Section 4 deals with the discretization of the
generalized two-dimensional anisotropic convective diffusion equation by a rotated upwind
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scheme that produces an M-matrix. As illustrations of the method, numerical examples are
given in Section 5.

2. NUMERICAL ISSUES IN THE DISCRETIZATION OF THE MIXED

DERIVATIVE TERM

In this section we analyze the numerical issues associated with the discretization of
a simple, two-dimensional, steady state, anisotropic diffusion equation. The anisotropic
diffusion problem is defined by

Jx = D11
∂φ

∂x
+ D12

∂φ

∂y
(2)

Jy = D21
∂φ

∂x
+ D22

∂φ

∂y
(3)

−∂ Jx

∂x
− ∂ Jy

∂y
= 0, (4)

where theDi j (i = 1, 2, j = 1, 2) are diffusion coefficients which make the conserva-
tion equation (4) elliptic, andJx and Jy are the typical diffusion flux vector compo-
nents influencing the potentialφ. The above problem is solved in a rectangular domain
Ä = {(x, y)/a ≤ x ≤ b, c≤ y ≤ d} subject to a mixture of Dirichlet and Neumann boundary
conditions. For simplicity we assume

φ = φB at x = a and x= b for c ≤ y ≤ d (5)

Jy = QB at y = c and y= d for a ≤ x ≤ b, (6)

whereφB is a known function on the Dirichlet boundary, andQB is a prescribed flux function
on the Neumann boundary. Substituting for the flux components in (4), the governing
equation can be cast in the form

−A1
∂2φ

∂x2
− A2

∂2φ

∂x ∂y
− A3

∂2φ

∂y2
= 0, in Ä, (7)

where the coefficientAi are given byA1 = D11, A2 = D11 + D12, A3 = D22.
The PDE (7) is discretized over a rectangular grid. Following the notation used for the

various nodes surrounding the interior node(i, j ) as shown in Fig. 1, the second derivatives
along the coordinate axes are discretized by

∂2φ

∂x2
(xi , yj ) = φi +1, j − 2φi, j + φi −1, j

h2
(8)

and

∂2φ

∂y2
(xi , yj ) = φi, j +1 − 2φi, j + φi, j −1

k2
, (9)
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FIG. 1. Grid used in numerical scheme indicating notation used for nodes surrounding the central node (i, j).

whereφi, j is the dependent variable defined at node(i, j ), andxi +1 − xi = h andyj +1 − yj =
k. The mixed derivative is discretized by the second-order accurate scheme

∂2φ

∂x ∂y
(xi , yj ) = φi +1, j +1 + φi −1, j −1 − φi +1, j −1 − φi −1, j +1

4hk
. (10)

At the Dirichlet boundary nodes, we have

φi, j = φB,

whereφB is known. At nodes on the boundary that lie parallel to the x-axis and form part
of the upper boundary(y = d), the insulating boundary condition

Jy = D21
∂φ

∂x
+ D22

∂φ

∂y
= 0

is discretized as follows. When bothD22 and D21 are of the same sign, the insulating
boundary condition is discretized as

D21

(
φi, j − φi −1, j

h

)
+ D22

(
φi, j − φi, j −1

k

)
= 0. (11)

When bothD22 andD21 are of different sign, the discretized insulating boundary condition
is given by

D21

(
φi +1, j − φi, j

h

)
+ D22

(
φi, j − φi, j −1

k

)
= 0. (12)

Similarly, we can discretize the Neumann boundary condition at the other boundaryy = d.
Substituting (8)–(10) into (7) at all interior points(i, j ), the discretized equation is given
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by

−A1

{
φi +1, j − 2φi, j + φi −1, j

h2

}
− A2

{
φi +1, j +1 + φi −1, j −1 − φi +1, j −1 − φi −1, j +1

4hk

}
− A3

{
φi, j +1 − 2φi, j + φi, j −1

k2

}
= 0. (13)

For any row, associated with the interior node(i, j ), the diagonal entry is given by
2A1/h2 + 2A3/k2, which is positive irrespective ofh andk. But the off-diagonal entries
−A2/4hk corresponding to the nodes(i + 1, j + 1) and(i − 1, j − 1) always differ in sign
from the entriesA2/4hkcorresponding to the nodes(i + 1, j − 1) and(i − 1, j + 1). Hence
the discrete system will never be an M-matrix irrespective of the grid sizeh andk. This
hurdle is purely due to the way the mixed derivative term is discretized. This is precisely
the reason Tapiero and Sulem [6], Asencor and Panizo [11], and Crumptonet al. [4] could
not attain discrete maximum principles in their discretization. It may be noted here that
the above conclusion is independent of the way the Neumann boundary condition (6) is
discretized. Other discretization schemes for the mixed derivative include [9]

∂2φ

∂x ∂y
(xi , yj ) = φi +1, j +1 + φi −1, j −1 − φi +1, j − φi −1, j − φi, j +1 − φi, j −1 + 2φi, j

2hk
(14)

∂2φ

∂x ∂y
(xi , yj ) = φi, j +1 + φi, j −1 + φi −1, j + φi +1, j − φi −1, j +1 − φi +1, j −1 − 2φi, j

2hk
(15)

∂2φ

∂x ∂y
(xi , yj ) = φi +1, j +1 + φi, j − φi, j +1 − φi +1, j

hk
(16)

∂2φ

∂x ∂y
(xi , yj ) = φi, j +1 + φi −1, j − φi, j − φi −1, j +1

hk
(17)

∂2φ

∂x ∂y
(xi , yj ) = φi, j + φi −1, j −1 − φi, j −1 − φi −1, j

hk
(18)

∂2φ

∂x ∂y
(xi , yj ) = φi +1, j + φi, j −1 − φi, j − φi +1, j −1

hk
. (19)

The above schemes are of different accuracy varying from first order to second order. But all
of them, along with schemes (8) and (9), produce the M-matrix under restricted conditions:

(1) If A1, A2, andA3 are all positive, scheme (14) will produce an M-matrix if

A2

2hk
≤ min

{
A1

h2
,

A3

k2

}
(20)

but not whenA2 is negative.
(2) If A1, A3 are positive andA2 is negative, scheme (15) will produce an M-matrix if

− A2

2hk
≤ min

{
A1

h2
,

A3

k2

}
(21)

but not whenA2 is positive.
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(3) If A1, A2, andA3 are all positive, schemes (16) and (18) will produce an M-matrix
if

A2

hk
≤ min

{
A1

h2
,

A3

k2

}
(22)

but not whenA2 is negative.
(4) If A1, A3 are positive andA2 is negative, schemes (17) and (19) will produce an

M-matrix if

− A2

hk
≤ min

{
A1

h2
,

A3

k2

}
(23)

but not whenA2 is positive.

The discretization schemes (14)–(19) for the mixed derivative term hold for any arbitrary
elliptic PDE. The schemes do not take into account the special features of the governing
PDE except its elliptic nature. However, the elliptic nature of the equation, quantified by the
term A2

2 − 4A1A3, weakens as the anisotropy, represented by the coefficient of the mixed
derivative term, dominates in magnitude. As the coefficient of the mixed derivative term
increases,A2

2 − 4A1A3 → 0, thus weakening the elliptic nature. In this limit, the governing
elliptic equation becomes an ordinary differential equation along some axis defined by
the diffusion coefficients. In this limiting case, any interior point is heavily influenced
by neighborhood points on the axis, and not by the other surrounding points. This onset
of parabolic nature of the elliptic PDE should be taken into account when devising the
numerical schemes. This is illustrated in the next section.

3. A ROTATED DIFFERENCE FOR THE ANISOTROPIC DIFFUSION EQUATION

In this section, we present a physically rotated difference scheme that incorporates the
limiting characteristics of the anisotropic diffusion equation. The governing diffusion equa-
tion (7) is cast in the form{

−B
∂2φ

∂x2
− A2

∂2φ

∂x ∂y
− A2

2

4B

∂2φ

∂y2

}
+ (B − A1)

∂2φ

∂x2
+

(
A2

2

4B
− A3

)
∂2φ

∂y2
= 0, (24)

where B is any arbitrary constant selected so that

A2
2

4A3
≤ B ≤ A1. (25)

We split the governing equation so that the limiting elliptic behaviour is represented exactly.
It can be seen that the part

−B
∂2φ

∂x2
− A2

∂2φ

∂x ∂y
− A2

2

4B

∂2φ

∂y2

is always parabolic, when it is considered alone, irrespective of B. This part of the PDE
is projected along two orthogonal coordinate systems so that the mixed derivative term
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vanishes in the transformed system given by

u = x cosθ + y sinθ

v = −x sinθ + y cosθ

along with

tan 2θ = A2

B − A2
2

/
4B

. (26)

This leads to

tanθ = A2

2B
(27)

and

tanθ = −2B

A2
. (28)

Along the direction defined by (27), the partial differential equation (24) becomes

−P1
∂2φ

∂u2
+ (B − A1)

∂2φ

∂x2
+

(
A2

2

4B
− A3

)
∂2φ

∂y2
= 0, (29)

where

P1 = cos2 θ

{
B + A2

2

2B
+ A4

2

16B3

}
.

Along the direction defined by (28), the governing equation may be represented by

−P2
∂2φ

∂v2
+ (B − A1)

∂2φ

∂x2
+

(
A2

2

4B
− A3

)
∂2φ

∂y2
= 0, (30)

where

P2 = cos2 θ

{
2B + A2

2

4B
+ 4B3

A2
2

}
.

However, since both Eqs. (29) and (30) are similar, our analysis is restricted to (29) with
the rotation angle given by (27). The second derivative ofφ along theu-axis needs to be
discretized on a rectangular grid; hence, at least two nodes must lie on that axis. This takes
place if

|tanθ | = |A2|
2B

= k

h
. (31)

Using this, the inequality (25) leads to

|A2|
2A1

≤ k

h
≤ 2A3

|A2| . (32)
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This is the stability criterion required to produce a discrete M-matrix. AsA2 → 0, aniso-
tropy decreases and the choice of ratio of step sizes is no longer constrained. Once the ratio
between the step sizes has been selected, the arbitrary constant B can also be fixed using

B = |A2|h
2k

. (33)

When the rotation angle is positive, the second derivative ofφ along theu-axis can be
discretized as

∂2φ

∂u2
(i, j ) = φi +1, j +1 − 2φi, j + φi −1, j −1

s2
, (34)

wheres is the distance between nodes(i, j ) and(i + 1, j + 1). When the rotation angle is
negative, the derivative is given by

∂2φ

∂u2
(i, j ) = φi +1, j −1 − 2φi, j + φi −1, j +1

s2
. (35)

The differential operators along the orthogonal axes can be discretized as usual; see (8) and
(9). Substituting (8), (9), and (34) into (29), the discretized equation for positive rotation
angle becomes{

2P1

s2
− 2(B − A1)

h2
− 2

(
A2

2

/
4B − A3

)
k2

}
φi, j −

{
(B − A1)

h2

}
φi +1, j −

{
P1

s2

}
φi +1, j +1

−
{

(B − A1)

h2

}
φi −1, j −

{
P1

s2

}
φi −1, j −1 −

{(
A2

2

/
4B − A3

)
k2

}
φi, j +1

−
{(

A2
2

/
4B − A3

)
k2

}
φi, j −1 = 0. (36)

It can be noted that the coefficients ofφi +1, j +1, φi +1, j , φi −1, j , φi −1, j −1, φi, j +1, andφi, j −1

are all non-positive. Also the sum of the entries in each row, corresponding to every interior
node(i, j ), is zero. The discretization of Dirichlet and Neumann boundary conditions (11)
and (12) on the boundary nodes guarantee the remaining requirements for the discrete
system to be an M-matrix.

If the diffusion coefficientsA1, A2, andA3 are functions of the coordinatesx andy, the
stability criterion (32) becomes

Maxi, j

{ |A2(i, j )|
2A1(i, j )

}
≤ k

h
≤ Min i, j

{
2A3(i, j )

|A2(i, j )|
}

(37)

and the associatedB at any node(i, j ) is given by

B(i, j ) = |A2(i, j )|h
2k

. (38)

This means that the functionB(x, y) for a fixed grid will depend onA2(x, y) at any interior
point.
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4. A ROTATED UPWIND SCHEME FOR THE 2D ANISOTROPIC

DRIFT-DIFFUSION EQUATION

Following the results obtained in the previous section, we describe a monotone rotated
upwind discretization scheme for the anisotropic drift-diffusion equation (1), subject to the
Dirichlet and Neumann boundary conditions (5) and (6).

We select the ratio of step sizes so that it satisfies the stability condition (37). At any
interior node(i, j ), with the coordinate(xi , yj ), the second derivative terms in Eq. (1) can
be written as

−A1(i, j )
∂2φ

∂x2
− A2(i, j )

∂2φ

∂x ∂y
− A3(i, j )

∂2φ

∂y2

= −P1(i, j )
∂2φ

∂u2
+

(
B(i, j ) − A1(i, j )

)
∂2φ

∂x2
+

(
A2

2(i, j )

4B(i, j )
− A3(i, j )

)
∂2φ

∂y2
, (39)

whereB(i, j ) is given by (38) and

P1(i, j ) = cos2 θ

{
B(i, j ) + A2

2(i, j )

2B(i, j )
+ A4

2(i, j )

16B3(i, j )

}
.

Depending on the sign of the rotation angle, defined by

tanθ = A2(i, j )

2B(i, j )
, (40)

the second derivative operator along theu-axis and other two orthogonal axes are discretized
as explained in the previous section. To discretize the convective derivative terms, the
convective part of Eq. (1) is cast in the form

A4
∂φ

∂x
(xi , yj ) + A5

∂φ

∂y
(xi , yj ) =

√
A2

4 + A2
5

∂φ

∂s
(i, j ), (41)

where∂φ

∂s is the derivative ofφ in the direction of the characteristic given by

du

A4
= dv

A5
.

The characteristic derivative∂φ

∂s at O(i, j ) is then discretized by

∂φ

∂s
= φ(O) − φ(P)

dOP
, (42)

wheredOP is the distance betweenO and P. The root of the characteristicP need not be
a nodal point when the characteristic curve does not coincide with one of the diagonals
of the polygon. The characteristic line,O P (where P is an arbitrary point denoting the
intersection of the local characteristic with the boundary of the cell), is assumed to be linear
within the cell connecting the eight surrounding nodes. The location ofP depends on the
sign of A4(i, j ) andA5(i, j ):

(1) When bothA4(i, j ) andA5(i, j ) are negative,P either lies on the line joining the
nodes(i + 1, j ) and(i + 1, j + 1) or that of the nodes(i + 1, j + 1) and(i, j + 1).
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(2) WhenA4(i, j ) is positive andA5(i, j ) is negative,P either lies on the line joining
the nodes(i, j + 1) and(i − 1, j + 1) or that of the nodes(i − 1, j + 1) and(i − 1, j ).

(3) When bothA4(i, j ) andA5(i, j ) are positive,P either lies on the line joining the
nodes(i − 1, j ) and(i − 1, j − 1) or that of the nodes(i − 1, j − 1) and(i, j − 1).

(4) WhenA4(i, j ) is negative andA5(i, j ) is positive,P either lies on the line joining
the nodes(i, j − 1) and(i + 1, j − 1) or that of the nodes(i + 1, j − 1) and(i + 1, j ).

When the characteristic does not coincide with the co-ordinate axes,P has to be inter-
polated between the neighboring nodes and this can be done in many ways. In this work, a
linear interpolation is employed. We will illustrate this with an example. Let the character-
istic meet the line connecting the nodes(i + 1, j ) and(i + 1, j + 1) at P for the case when
A4(i, j ) andA5(i, j ) are negative. Expanding by Taylor’s series and neglecting the higher
order terms, we get

φ(P) = yP − yj

k
φi +1, j +1 + yj +1 − yP

k
φi +1, j .

When the interior node is near the boundary, there will not be eight neighboring nodes,
if the domain is not rectangular, andφ(P) has to be interpolated accordingly. When the
convective velocity is in the direction of one of the coordinate axes, the scheme reduces to
the usual first order upwinding. In many respects the discretization employed here is along
the lines proposed by Rice and Schnipke [12] for the discretization of isotropic elliptic partial
differential equation and used by Roe and Sidilkover [13] for the discretization of hyperbolic
equations. Combining the discretization of the diffusive and convective derivative terms,
we get

Ci, j φi, j = Ci −1, j −1φi −1, j −1 + Ci, j −1φi, j −1 + Ci +1, j −1φi +1, j −1 + Ci +1, j φi +1, j

+ Ci +1, j +1φi +1, j +1 + Ci, j +1φi, j +1 + Ci −1, j +1φi −1, j +1 + Ci −1, j φi −1, j , (43)

where

Ci, j = Ci −1, j −1 + Ci, j −1 + Ci +1, j −1 + Ci +1, j + Ci +1, j +1 + Ci, j +1

+ Ci −1, j +1 + Ci −1, j + A6(i, j )

Ci −1, j −1 = P1(i, j )

s2

Ci, j −1 =
(

A2
2(i, j )

/
4B(i, j ) − A3(i, j )

)
k2

Ci +1, j −1 = 0

Ci +1, j = (B(i, j ) − A1(i, j ))

h2
+

√
A2

4(i, j ) + A2
5(i, j )

yj +1 − yP

dOPk

Ci +1, j +1 = P1(i, j )

s2
+

√
A2

4(i, j ) + A2
5(i, j )

yP − yj

dOPk

Ci, j +1 =
(

A2
2(i, j )

/
4B(i, j ) − A3(i, j )

)
k2

Ci −1, j +1 = 0

Ci −1, j = (B(i, j ) − A1(i, j ))

h2
.
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All of the off-diagonal entries are non-positive. Also the sum of the entries of each row,
corresponding to every interior node(i, j ), is zero. The Dirichlet and Neumann boundary
conditions on the boundary nodes guarantee the remaining requirements for the discrete
system to be an M-matrix.

5. NUMERICAL ILLUSTRATIONS

In order to test and validate the accuracy of the numerical solution, the scheme has
been applied to extreme or limiting conditions, such as pure diffusion and pure convection
problems, for which analytical solutions are known. In the pure convection case, with
a known convective velocity along the diagonal of the unit cell, the scheme was able
to predict the exact solution even when the analytical solution was discontinuous across
the diagonal. Similarly the scheme was tested for purely diffusion controlled problems
(A4 = A5 = A6 = 0) with constant coefficients. Here, the analytic solution is given by

φ = a0 + a1x + a2y + a3x2 + a4xy + a5y2

with

a5 = − A12a3 + A2a4

2A3
,

whereai (i = 0, . . . , 4) are arbitrary constants. The Dirichlet condition is selected consis-
tently with the analytical solution. The numerical solution coincides with the exact solution
for arbitrary coefficients of the differential equation.

In the third test case, we consider a problem whose coefficients of the PDE,Ai (x, y)

(i = 1, . . . , 5) are constants andA6 = 0. One possible solution is obtained as follows. Using
an orthogonal transformation given by

u = x cosθ + y sinθ

v = −x sinθ + y cosθ

with

tan 2θ = A2

A1 − A3
,

the PDE (1) is cast in the form

P
∂2φ

∂u2
+ Q

∂2φ

∂v2
+ R

∂φ

∂u
+ S

∂φ

∂v
= 0, (44)

where

−P = A1 cos2 θ + A2 sinθ cosθ + A3 sin2 θ

−Q = A1 sin2 θ − A2 sinθ cosθ + A3 cos2 θ

R = A4 cosθ + A5 sinθ

S = −A4 sinθ + A5 cosθ.



           

456 THANGARAJ AND NATHAN

A general solution can be obtained by the method of separation of variables. Assuming the
solution to be of product form

φ(u, v) = G(u)H(v)

we get, whenφ 6= 0

P
d2G

du2
+ R

dG

du
− αG = 0

Q
d2H

dv2
+ S

d H

dv
+ αH = 0,

whereα is any arbitrary parameter independent ofu andv. Since the original PDE is elliptic
in nature, the coefficientsP andQ will be of the same sign. For convenience, we assume
that P andQ are negative. Depending onα, we may get different families of solutions. We
will restrict our attention to the caseα1 ≤ α ≤ α2, where

α1 = S2

4Q
, α2 = − R2

4P
.

This interval will cover most of the region of interest forα when the diffusion terms tend
to shrink in magnitude compared to the drift terms. The solution is given by

φ(u, v) = β1(α) em1u+n1v + β2(α) em1u+n2v + β3(α) em2u+n1v + β4(α) em2u+n2v,

where

m1 = −R + √
R2 + 4Pα

2P
m2 = −R − √

R2 + 4Pα

2P

n1 = −S+
√

S2 − 4Qα

2Q
n2 = −S−

√
S2 − 4Qα

2Q
.

Here,β1(α), β2(α), β3(α), β4(α) are arbitrary functions of the parameterα and the general
solution is given by

φ(u, v) =
∫ α2

α1

{
β1(α) em1u+n1v + β2(α) em1u+n2v + β3(α) em2u+n1v + β4(α) em2u+n2v

}
dα.

(45)

This analytical solution is applied as Dirichlet boundary conditions with

β1(α) = β2(α) = β3(α) = β4(α) = δ(α − α0),

whereδ(α − α0) is the Kronecker delta function andα0 = α1 + α2
2 .
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FIG. 2. The error indicator E1, described by Eq. (46), as a function of node density in x- and y-directions, for
the test problemA1 = 1.0, A2 = 1.8, A3 = 1.0, A4 = 2.0, A5 = 2.0.

To determine the integrity of the discretization scheme, we employ the standard error
indicators

E1 =
∑ |φ(i ) − 9(i )|

N
(46)

E2 = |φ(i ) − 9(i )|
9(i )

, (47)

where the relative error is defined for the non-vanishing exact solution. Here, the summation
is over the total number of nodesN, andφ(i ) and9(i ) are the numerical and the exact
solutions at a discrete nodei , respectively. All computations are carried out on a unit square
and the Gauss–Seidel method is considered to have converged to the solution when∑ |φ(i )k+1 − φ(i )k|

N
< 2.5 × 10−7. (48)

Here, the indexk denotes the iteration number.
To validate our numerical discretization scheme, we employ relations (46) and (47) on

two test cases, for which the analytical solutions are given by Eq. (45). In both cases, we



     

FIG. 3. The relative error E2, defined by Eq. (47), for 0≤ y ≤ 1 at x= 0.5 corresponding to the same test
problem considered in Fig. 2.

FIG. 4. Comparison of numerical solution (solid line) and analytical solution (symbols),φ and9, respectively,
for 0≤ y ≤ 1 at x= 0.5 corresponding to the test problem considered in Fig. 2.



             

THE ANISOTROPIC DRIFT-DIFFUSION EQUATION 459

evaluate the error indicatorE1, the relative errorE2, and the behaviour of the solution
variableφ in the computational domain.

The first test case has the following values for the coefficients:A1 = 1.0, A2 = 1.8,

A3 = 1.0, A4 = 2.0, A5 = 2.0. Figure 2 illustrates the behaviour of the error indicatorE1
as a function of node density for a symmetric and uniform distribution of nodes inx- and
y-directions. In the case considered, since the analytical solution varies exponentially along
the diagonal of the computational domain, one would expect a faster decrease in the indi-
cator E1 for a higher node density at locations where the solution gradient is large. The
relative error in the solution variable as a function ofy (for x = 0.5) is shown in Fig. 3.
The error is less than 0.045% over the range of values, 7≤ φ ≤ 15. The appearance of peaks
in E2 is merely a computational artifact which can be attributed to the Gauss–Seidel iteration
scheme and the associated value employed to terminate the iterations. The resulting values
of φ and its comparison to the analytical solution are shown in Fig. 4 atx = 0.5(0≤ y ≤ 1).
As expected, following the negligible relative error (see Fig. 3), the discrepancy is less than
0.05%.

The second test case is similar except for a difference in values of the coefficientsA4 and
A5, which now yield a spatial gradient in solution that is larger by a factor of 1000. Here,
as beforeA1 = 1.0, A2 = 1.8, A3 = 1.0, butA4 = 8.0, A5 = 8.0 (see Fig. 5), resulting in the
following range in the solution variable: 0≤ φ ≤ 6000. Because of the even more dramatic

FIG. 5. Same conditions as in Fig. 2, but for the test problem with coefficientsA1 = 1.0, A2 = 1.8, A3 = 1.0,

A4 = 8.0, A5 = 8.0.



      

FIG. 6. Same conditions as in Fig. 4, but for the test problem with coefficientsA1 = 1.0, A2 = 1.8, A3 = 1.0,

A4 = 8.0, A5 = 8.0.

FIG. 7. Same conditions as in Fig. 3, but for the test problem with coefficientsA1 = 1.0, A2 = 1.8, A3 = 1.0,

A4 = 8.0, A5 = 8.0.
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exponential variation ofφ, the errorE1, for the same node distribution, is far larger in
magnitude. Again we expect that a non-uniform node distribution would result in a faster
decrease inE1 to account for the large gradient inφ. Despite the very large, i.e., more than
three orders of magnitude, spread in values of the solution variable (see Fig. 6) coupled
with the criterion employed for convergence as given by Eq. (48), the relative error turns to
be less than 3% (see Fig. 7). This range of error can be decreased further by a more efficient
node distribution and/or through a tighter convergence criterion. Again the observed peaks
are numerical artifacts due to the Gauss–Seidel iterative method.

6. CONCLUSIONS

In this paper, we have presented a new discretization scheme for the two-dimensional
anisotropic drift-diffusion equation with inhomogeneous coefficients, under steady state
conditions. In the diffusion dominated case, a family of schemes is proposed, which pre-
serves the limiting behaviour of the anisotropic elliptic equation and yields an M-matrix.
This serves to guarantee a stable oscillation-free solution as well as use of standard iterative
solvers. The scheme has been extended to the generalized inhomogeneous drift-diffusion
equation whereby we have incorporated the flow of upwind information using a rotated
difference method for the drift component. The resulting system of equations satisfies the
requirements for an M-matrix. The scheme is validated by comparison with test problems
whose exact solutions are known. Good agreement has been observed within physically
realistic limits.
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