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A rotated upwind discretization scheme is presented for the discretization of the
steady-state two-dimensional anisotropic drift-diffusion equation, taking into ac-
count the local characteristic nature of the solution. The notable features of the
algorithm lie in the projection of the governing partial differential equation onto two
orthogonal axes, to yield a vanishing mixed derivative term, and in the utilization
of the upwind flow of information. As a result the limiting behaviour of the ellip-
tic equation is preserved in the discretization. The scheme produces an M-matrix
which guarantees an oscillation free solution and which enables the discrete system
to be solved using standard iterative solvers. The method is illustrated by numerical
examples for which the analytical solutions are knowg.1998 Academic Press

1. INTRODUCTION

This paper describes a new rotated monotone finite-difference scheme for solvin
two-dimensional, steady-state, anisotropic elliptic partial differential equation (PDE)
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subject to a mixture of Dirichlet and Neumann boundary conditions. HereAthe =
1,...,6) are known functions of the independent variables defined on a dofhan
whose boundar§<2, the boundary conditions are prescribed. The coefficients of the sec
derivative terms of the PDE, generally called diffusion coefficients, are given so that the
represents an elliptic equation, i.82 — 4A; Az < 0 at any point (x, y). For convenience
it is assumed that the coefficiemg(x, y) and Az(X, y) are of same sign and are positive
445
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The linear source termg(X, y) is also assumed positive so that the maximum principls
can be attained. The coefficients of the first derivatives, called drift velocity componer
convect the unknown dependent variaple

The above PDE arises in many branches of engineering physics. For example, w
a semiconductor device is subject to a magnetic field, the current density relations,
hence, the current continuity equations for electrons and holes, become anisotropi
virtue of the Lorentz force [1,2]. Similarly, in the presence of mechanical stress, carr
transport in the semiconductor device becomes anisotropic by virtue of piezoresistance
The anisotropic diffusion equation also governs flow in porous media, pertinent to res
voir simulation problems, as well as the transport of atmospheric gases [4,5]. The PDE
is called the Hamilton—Jacobi—Bellman equation which governs the dynamics of any ¢
chastic optimal control problem when the underlying processes are driven by Brown
motion [6].

In discretization of the PDE, we seek the resultant discrete system to be an M-ma
S0 as to enable use of standard iterative algorithms based on Gauss—Seidel metho
addition, the M-matrix guarantees the discrete maximum principle. In the absence ¢
source term, the maximum principle states that the maximum of the unknown depenc
variable occurs on the boundary and that the dependent variable does not take neg
values. If the discretization scheme does not preserve this property, then the solutions
take negative values and oscillate, which may not be meaningful from both physical
mathematical points of view [7,8]. To attain this maximum principle, the discrete set
equations should satisfy the following properties [7,8]:

(1) Diagonal entries of all rows should be positive.

(2) Off-diagonal entries of all rows should be non-positive.

(3) Sum of entries of any row should be non-negative, but this sum should be posi
for at least one row.

If a discrete system satisfies the above conditions, the matrix is said to be an M-ma
the inverse of which contains only positive entries. Many numerical methods have b
proposed for the discretization of the PDE [9,10]. The presence of the mixed derivat
term limits the attaining of an M-matrix, although there are many schemes that sati
various stability criteria needed for an M-matrix. However, the schemes do not take il
account the special features of the PDE except its elliptic nature. In addition, the presenc
the first derivative terms imposes conditions on the mesh size to obtain an M-matrix us
central difference formulas. The usual upwind schemes to deal with the first derivative te
do not accurately model the local characteristics of the PDE.

The objective of this work is to develop a rotated monotone discretization scheme
the anisotropic elliptic PDE taking into account the local characteristic nature of the
lution to yield a resultant discrete system that is an M-matrix. There are two rotations
this scheme. One rotation pertains to the projection of the diffusion part of the PDE alc
the orthogonal axes so that the mixed derivative term vanishes in the new coordinate
tem. The other rotation addresses the discretization of the convective derivative. Secti
describes the numerical issues associated with the discretization of the mixed derive
term in conjunction with a diffusion equation with constant but anisotropic coefficient
The numerical issues can be overcome using a physically stable rotated monotone di
ence scheme. This is presented in Section 3. Section 4 deals with the discretization o
generalized two-dimensional anisotropic convective diffusion equation by a rotated upw
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scheme that produces an M-matrix. As illustrations of the method, numerical example:
given in Section 5.

2. NUMERICAL ISSUES IN THE DISCRETIZATION OF THE MIXED
DERIVATIVE TERM

In this section we analyze the numerical issues associated with the discretizatio
a simple, two-dimensional, steady state, anisotropic diffusion equation. The anisotr
diffusion problem is defined by

d¢ d¢
Jy = D11— + Dio— 2
X 118X + 128y 2
¢ d¢
Jy = Do1— + Doyr— 3
y 218x + 223y 3
_8_‘]X _ B_Jy =0, (4)
aX ay

where theD;; (i=1,2, j=1,2) are diffusion coefficients which make the conserve
tion equation (4) elliptic, and), and J, are the typical diffusion flux vector compo-
nents influencing the potentigl. The above problem is solved in a rectangular doma
Q={(x, y)/a<x <b, c<y=<d}subjectto a mixture of Dirichlet and Neumann boundar
conditions. For simplicity we assume

¢ =¢p atx=a and x="b forc<y=<d (5)
Jy=Qpaty=c and y=d fora<x <b, (6)
wheregg is a known function on the Dirichlet boundary, a@g is a prescribed flux function

on the Neumann boundary. Substituting for the flux components in (4), the goverr
equation can be cast in the form

92 92 92 .
1—¢ -A ¢ _ A3—¢ =0, inQ, (7
ax2 X oy ay?

where the coefficiend are given byA; = D13, Ao = D11+ D12, Az = Do

The PDE (7) is discretized over a rectangular grid. Following the notation used for
various nodes surrounding the interior n@dgj ) as shown in Fig. 1, the second derivative:
along the coordinate axes are discretized by

%9 dit1j — 200 + di—1j

m(xi, Yi) = h? (8)
and

9% i1 — 20+ di -1

a—yz(xi ) yJ) - k2 ) (9)
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FIG. 1. Grid used in numerical scheme indicating notation used for nodes surrounding the central node (i,

whereg; j isthe dependentvariable defined at nGd¢), andx; .1 — i =handy; ;1 — yj =
k. The mixed derivative is discretized by the second-order accurate scheme

9% Girtj+1 T di-1j-1—Pit1j-1— Pi-1j41
— X,y = .
ax ay 4hk

(10)

At the Dirichlet boundary nodes, we have
9i.j = ¢B,

wheregg is known. At nodes on the boundary that lie parallel to the x-axis and form pe
of the upper boundargy = d), the insulating boundary condition

¢ ¢
Jy=Dy;— 4+ Doyy— =0
y 218X+ 228y

is discretized as follows. When botb,, and D,; are of the same sign, the insulating
boundary condition is discretized as

e L G B (11)

When bothD,, andD; are of different sign, the discretized insulating boundary conditiol
is given by

D21<W) + %(%) —o. (12)

Similarly, we can discretize the Neumann boundary condition at the other boungady
Substituting (8)—(10) into (7) at all interior poingsg j), the discretized equation is given
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by

_A Git1j — 200 + di_1j A Gittjr1+di—1j-1— Pit1j-1— Di-1j+1
! h2 ahk

_A3{¢i’j+l_2¢i’j +¢i,j—1} —0. (13)

k2

For any row, associated with the interior node j), the diagonal entry is given by
2A;/h? +2A3/k?, which is positive irrespective df andk. But the off-diagonal entries
—Ay/4hk corresponding to the nodéis+ 1, j + 1) and(i — 1, j — 1) always differ in sign
from the entries\,/4hk corresponding to the nodés+ 1, j — 1) and(i — 1, j +1). Hence
the discrete system will never be an M-matrix irrespective of the gridtsiaedk. This
hurdle is purely due to the way the mixed derivative term is discretized. This is precic
the reason Tapiero and Sulem [6], Asencor and Panizo [11], and Cruretpadid] could
not attain discrete maximum principles in their discretization. It may be noted here
the above conclusion is independent of the way the Neumann boundary condition (
discretized. Other discretization schemes for the mixed derivative include [9]

;;gﬁy( X, Vi) = irj+1+dio1j-1— Pt —Zr:bli(—l,j —dij+1— i.j-1+ 20 (14)
3(123)),( X, y;) = i j41+ dij—1+ di-1j +¢>i+21r,1jk— Gi-1,j+1 — it j-1 — 20 | (15)
aizgjy( % yi) = Git1,j+1+ @i, Jhk¢i.j+1—¢i+1,j (16)
affg X, yj) = ¢i,j+1+¢i—1,jh—k¢i,j —di-1j+1 17)
;fgﬁy( %0 Vi) = Pi.j +¢i—1,j—1h—k¢i.j—1 —Pi-1] (18)
afj:?y( X, y) = Pit1,j +¢>i,j—1h—k¢i,j _¢i+1,j—1. (19)

The above schemes are of different accuracy varying from first order to second order. B
of them, along with schemes (8) and (9), produce the M-matrix under restricted conditi

(1) If Aq, Az, and Az are all positive, scheme (14) will produce an M-matrix if

A, A As
2k = m'”{ﬁ’ F} (20)

but not whenA; is negative.
(2) If A1, Az are positive and\; is negative, scheme (15) will produce an M-matrix il

A, [ AL As
_ﬁfm'n{ﬁ’ﬁ} (21)

but not whenA; is positive.
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(3) If A1, Az, andAz are all positive, schemes (16) and (18) will produce an M-matri;

Ay . [A1 Ag
hk < mm{hz, kz} (22)

but not whenA; is negative.
(4) If Ay, As are positive andd; is negative, schemes (17) and (19) will produce ar
M-matrix if

A [ AL As
“hk < mm{ﬁ, ﬁ} (23)

but not whenA; is positive.

The discretization schemes (14)—(19) for the mixed derivative term hold for any arbitr:
elliptic PDE. The schemes do not take into account the special features of the govert
PDE except its elliptic nature. However, the elliptic nature of the equation, quantified by 1
term A% — 4A; Az, weakens as the anisotropy, represented by the coefficient of the mix
derivative term, dominates in magnitude. As the coefficient of the mixed derivative te
increasesAZ — 4A; A; — 0, thus weakening the elliptic nature. In this limit, the governing
elliptic equation becomes an ordinary differential equation along some axis defined
the diffusion coefficients. In this limiting case, any interior point is heavily influence
by neighborhood points on the axis, and not by the other surrounding points. This or
of parabolic nature of the elliptic PDE should be taken into account when devising |
numerical schemes. This is illustrated in the next section.

3. AROTATED DIFFERENCE FOR THE ANISOTROPIC DIFFUSION EQUATION

In this section, we present a physically rotated difference scheme that incorporates
limiting characteristics of the anisotropic diffusion equation. The governing diffusion equ
tion (7) is cast in the form

9%¢ %¢p A2 9% 3%¢ A3 9%¢
—B— — A — 2”7 B-—A)o—r + (22 _A3)22 =0, (24
{ ox2 “axdy 4B ayz} * v ax2 + <4B 3) ay2 )

where B is any arbitrary constant selected so that

2

2
123_ =M1 ( )

We splitthe governing equation so that the limiting elliptic behaviour is represented exac
It can be seen that the part

50 0 _ M

ax2  Z3xay 4B ay?

is always parabolic, when it is considered alone, irrespective of B. This part of the P
is projected along two orthogonal coordinate systems so that the mixed derivative t
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vanishes in the transformed system given by

U = X cosf + ysiné
v = —XSinb + ycosh

along with
A
tan® = — 2 . (26)
B— A3/4B
This leads to
Ay
tang = — 27
2B (27)
and
2B
tang = ——. 28
A (28)

Along the direction defined by (27), the partial differential equation (24) becomes

¢ 2¢ ¢
—Pro 5+ (B—A) (48 A ) a2 = =0, (29)

where

2 A2 A}
PL= B+ —=
1 =CO0 0{ + B + 1683}

Along the direction defined by (28), the governing equation may be represented by

9%¢

P
2902

2 2
F@- AT Y ¢ (45 A)ay"z’_o, (30)

where

P, = cos 0 ZB+A2+4B3
2 4B AZ [

However, since both Egs. (29) and (30) are similar, our analysis is restricted to (29)
the rotation angle given by (27). The second derivativeé along theu-axis needs to be
discretized on a rectangular grid; hence, at least two nodes must lie on that axis. This
place if

Aol Kk

tand| = —— = —. 31
ltand| = —2° = (31)
Using this, the inequality (25) leads to

A 2A;

Pel K 2 (32)

2 ~ h | Azl
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This is the stability criterion required to produce a discrete M-matrixAds> 0, aniso-
tropy decreases and the choice of ratio of step sizes is no longer constrained. Once the
between the step sizes has been selected, the arbitrary constant B can also be fixed u

[Azlh
B = .
2k

(33)

When the rotation angle is positive, the second derivative afong theu-axis can be
discretized as

3% Pt — 240 +di-1j1

S50 . (34)

wheres is the distance between nodgsj) and(i + 1, j +1). When the rotation angle is
negative, the derivative is given by

PP . . Pirrjo1— 20 +di-1j41
The differential operators along the orthogonal axes can be discretized as usual; see (8
(9). Substituting (8), (9), and (34) into (29), the discretized equation for positive rotati
angle becomes

2P 2(B—A) 2(AZ/4B — As) (B— A P,
=z — &ij —{7}¢i+1,j —{§}¢i+1,j+1

h2 k2 h2
B_ A P A2/4B — A
_ {(h—zl)}¢il’j - {5—21}¢i1,j1 - {%}‘PMH
AZ/4B —
_{U/I(—ZA@}@,,-_FO. (36)

It can be noted that the coefficients@ifi1 j+1, dit1j, di—1j, di—1j-1, ¢i,j+1, andei j_1
are all non-positive. Also the sum of the entries in each row, corresponding to every inte
node(, j), is zero. The discretization of Dirichlet and Neumann boundary conditions (1
and (12) on the boundary nodes guarantee the remaining requirements for the dis
system to be an M-matrix.

If the diffusion coefficientsA;, Ay, and Az are functions of the coordinatesandy, the
stability criterion (32) becomes

(1A )
Ma”J{ZAﬂLj)}

and the associate at any noddi, j) is given by

IA

K [2A0, )
ﬁme”{mmJn} 37)

_ 1A, i

B(, j 38
) K (38)
This means that the functidB(x, y) for a fixed grid will depend o\, (X, y) at any interior

point.
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4. AROTATED UPWIND SCHEME FOR THE 2D ANISOTROPIC
DRIFT-DIFFUSION EQUATION

Following the results obtained in the previous section, we describe a monotone rot
upwind discretization scheme for the anisotropic drift-diffusion equation (1), subject to
Dirichlet and Neumann boundary conditions (5) and (6).

We select the ratio of step sizes so that it satisfies the stability condition (37). At
interior node(i, j), with the coordinatéx;, y;), the second derivative terms in Eq. (1) car
be written as

. 92 . L 92
—A1<|,J>8—X‘§—Az(l,1>8xj 3<,J>—¢

N 92 AL, 0\ 92
=P )55+ (Bo D~ A, J)) - (4§E'i Jj;—Aa(LJ)>a—j; (39)

whereB(i, j) is given by (38) and

ARG D) AL ) }

Pu(i, j) =c0526{B(i, D+ o8 Ot 168

Depending on the sign of the rotation angle, defined by

_ AZ(it ])
tand = B0 )" (40)

the second derivative operator alongthaxis and other two orthogonal axes are discretize
as explained in the previous section. To discretize the convective derivative terms.
convective part of Eq. (1) is cast in the form

A .
Ay ¢(X.,y,)+A5 ¢(x|,y,)—\/ Aéa—i(w), (41)

Where% is the derivative of in the direction of the characteristic given by

du_dv
A A
The characteristic derivativ% atO(, j) is then discretized by

99 _ ¢(0) —¢(P)

= 42
ds dop ( )

wheredpp is the distance betweed and P. The root of the characteristie need not be
a nodal point when the characteristic curve does not coincide with one of the diago
of the polygon. The characteristic lin@ P (where P is an arbitrary point denoting the
intersection of the local characteristic with the boundary of the cell), is assumed to be lii
within the cell connecting the eight surrounding nodes. The locatidh dépends on the

sign of A4(i, j) and As(i, j):

(1) When bothA4(i, j) andAs(i, j) are negativeP either lies on the line joining the
nodes(i +1, j) and(i + 1, j + 1) or that of the node§ + 1, j + 1) and(i, j + 1).
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(2) WhenAy(i, j) is positive andAs(i, j) is negative P either lies on the line joining
the nodesi, j + 1) and(i — 1, j + 1) or that of the node§ — 1, j + 1) and(i — 1, j).

(3) When bothA4(i, j) andAs(i, j) are positive P either lies on the line joining the
nodes(i — 1, j) and(i — 1, ] — 1) or that of the node§ — 1, j — 1) and(, j — 1).

(4) WhenAy(i, j) is negative and\s(i, j) is positive,P either lies on the line joining
the nodesgi, j — 1) and(i +1, ] — 1) or that of the node§ + 1, j — 1) and(i + 1, j).

When the characteristic does not coincide with the co-ordinate &bas to be inter-
polated between the neighboring nodes and this can be done in many ways. In this wo
linear interpolation is employed. We will illustrate this with an example. Let the characte
istic meet the line connecting the nodées- 1, j) and(i + 1, j + 1) at P for the case when
A4(i, j) and As(i, j) are negative. Expanding by Taylor’s series and neglecting the high
order terms, we get

Yp —Yj
k

Y=Y,

o(P) = dir1jr1t
When the interior node is near the boundary, there will not be eight neighboring nod
if the domain is not rectangular, ard P) has to be interpolated accordingly. When the
convective velocity is in the direction of one of the coordinate axes, the scheme reduce
the usual first order upwinding. In many respects the discretization employed here is al
the lines proposed by Rice and Schnipke [12] for the discretization of isotropic elliptic part
differential equation and used by Roe and Sidilkover [13] for the discretization of hyperbc
equations. Combining the discretization of the diffusive and convective derivative terr
we get

Cijti,i =Ci—1j-10i-1j-1+Cij—10i j—1 + Citrj—1Pi+1j-1 + Cit1jPis1j
+Cit1j+10i+1j+1+ Cijt10ij+1+ Ci—1j410i-1.j+1 + Ci—1jdi-1j, (43)
where

Ci,j=Ci_1j-1+GCij-1+Cit1j-1+Cizrj + Ciyrj+1 +Cij41
+Ci_1jy1+Cicej + As, )

Pid, j
Ciajam 1(321)
c (A%G, j)/4Bd. j) — A, )
ij-1= K2
Cij1j-1=0
Ci+1,i = h2 +\/A£21(|7])+A§(|1]) W
Pid, j T . — i
Citrjt1= 1(32 D + \/Aﬁ(h )+ AdG, ) y';opkyj
(A5G, j) /4B, j) — A, )
Ci—1j+1=0
B, j) — A, |
Ci71’]_:( a 1( J)).

h2
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All of the off-diagonal entries are non-positive. Also the sum of the entries of each r
corresponding to every interior nodee j), is zero. The Dirichlet and Neumann boundan
conditions on the boundary nodes guarantee the remaining requirements for the dis
system to be an M-matrix.

5. NUMERICAL ILLUSTRATIONS

In order to test and validate the accuracy of the numerical solution, the scheme
been applied to extreme or limiting conditions, such as pure diffusion and pure convec
problems, for which analytical solutions are known. In the pure convection case, v
a known convective velocity along the diagonal of the unit cell, the scheme was
to predict the exact solution even when the analytical solution was discontinuous ac
the diagonal. Similarly the scheme was tested for purely diffusion controlled proble
(A4 = As = As = 0) with constant coefficients. Here, the analytic solution is given by

¢ = ap + aX + agy + agXx? + ayXy + asy?

with
_ A2ag + Acay
- 2A; ’
whereg; (i =0, ..., 4) are arbitrary constants. The Dirichlet condition is selected cons

tently with the analytical solution. The numerical solution coincides with the exact solut
for arbitrary coefficients of the differential equation.

In the third test case, we consider a problem whose coefficients of the RIDE,y)
(i=1,...,5) are constants antl; = 0. One possible solution is obtained as follows. Usin
an orthogonal transformation given by

u = X cosh + ysind
v = —XSIinf + ycosh

with
Ar
tand = ————,
A — Ag
the PDE (1) is cast in the form
2
</> 3¢ a9
— S— =0, 44
8u2 Q au v (44)

where

—P = A, cof0 + A,sind cosd + Agsirf e
—Q = A;sir — Ay sind cost + Az cos o
R = Ascost + Assind
= —A4Sind + Ascosh.
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A general solution can be obtained by the method of separation of variables. Assuming
solution to be of product form

¢, v) = GUH @)

we get, wherp £ 0

d2G dG
P-— +R— —aG =0
du? + du “
d?H dH
— +S— H =0,
de2 + dv ta

wherex is any arbitrary parameter independenti@indv. Since the original PDE is elliptic
in nature, the coefficient® and Q will be of the same sign. For convenience, we assum
that P andQ are negative. Depending e we may get different families of solutions. We
will restrict our attention to the casg < o < a», where

& R?
g T

o1 =

This interval will cover most of the region of interest f@when the diffusion terms tend
to shrink in magnitude compared to the drift terms. The solution is given by

¢(u’ U) — ﬁl(a) em1u+n1u + ,32(0l) em1U+n2U + ﬁB(a) em2u+n1v + ,84((1) em2u+n2v’

where
—R+VR?+ 4P« —R—VR?+ 4P«
m; = my =
2P 2P
=S+ /& -4Qu —S— /% - 4Qu

Ny

2Q n 2Q

Here,B1(a), B2(@), Ba(a), Ba(x) are arbitrary functions of the parameteand the general
solution is given by

o2
$(U, v) = / {Bule) €™M 4 Bo(ar) €™MUTN 4 By(r) €M - By(a) €M) dar,
(45)
This analytical solution is applied as Dirichlet boundary conditions with
Pi(e) = Ba(a) = Pa(a) = Paler) = é(a — o),

whereé (o — ag) is the Kronecker delta function ang = %
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FIG. 2. The errorindicator E1, described by Eq. (46), as a function of node density in x- and y-directions.
the test problen®; = 1.0, A, =1.8, A;=1.0, A, =2.0, As=2.0.

To determine the integrity of the discretization scheme, we employ the standard ¢
indicators

E1— Z|¢(i)N— w(i)l (46)
E2 = M, 47
(i)

where the relative error is defined for the non-vanishing exact solution. Here, the summ:
is over the total number of nodes, and¢ (i) and ¥ (i) are the numerical and the exact
solutions at a discrete nodgrespectively. All computations are carried out on a unit squa
and the Gauss—Seidel method is considered to have converged to the solution when

Skt — g ()¥|
N

<25x107". (48)

Here, the indek denotes the iteration number.
To validate our numerical discretization scheme, we employ relations (46) and (47
two test cases, for which the analytical solutions are given by Eq. (45). In both cases
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FIG. 3. The relative error E2, defined by Eq. (47), for@ <1 at x=0.5 corresponding to the same test
problem considered in Fig. 2.
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FIG.4. Comparison of numerical solution (solid line) and analytical solution (symhp)dy, respectively,
for 0<y <1 at x=0.5 corresponding to the test problem considered in Fig. 2.
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evaluate the error indicatdgl, the relative erroE2, and the behaviour of the solution
variableg in the computational domain.

The first test case has the following values for the coefficieAts= 1.0, A, =1.8,
A3;=1.0, A,=2.0, As=2.0. Figure 2 illustrates the behaviour of the error indicaEdr
as a function of node density for a symmetric and uniform distribution of nodesand
y-directions. In the case considered, since the analytical solution varies exponentially e
the diagonal of the computational domain, one would expect a faster decrease in the
cator E1 for a higher node density at locations where the solution gradient is large.
relative error in the solution variable as a functionyoffor x = 0.5) is shown in Fig. 3.
The error is less than 0.045% over the range of valugsp & 15. The appearance of peaks
in E2is merely a computational artifact which can be attributed to the Gauss—Seidel itere
scheme and the associated value employed to terminate the iterations. The resulting \
of ¢ and its comparison to the analytical solution are shown in Figx4a0.5(0<y <1).
As expected, following the negligible relative error (see Fig. 3), the discrepancy is less
0.05%.

The second test case is similar except for a difference in values of the coeffibicants
As, which now yield a spatial gradient in solution that is larger by a factor of 1000. He
as beforeA; = 1.0, A, =1.8, A3 =1.0, butA,=8.0, As = 8.0 (see Fig. 5), resulting in the
following range in the solution variable:0¢ < 6000. Because of the even more dramati
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FIG.5. Same conditions as in Fig. 2, but for the test problem with coefficidnts 1.0, A, =1.8, A;=1.0,
A,=8.0, A;=8.0.
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FIG. 6. Same conditions as in Fig. 4, but for the test problem with coefficiénts 1.0, A, =1.8, A; = 1.0,
A,=8.0, A;=8.0.
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FIG. 7. Same conditions as in Fig. 3, but for the test problem with coefficiénts 1.0, A, = 1.8, A;=1.0,
A;=8.0, As=8.0.
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exponential variation o, the errorE1, for the same node distribution, is far larger ir
magnitude. Again we expect that a non-uniform node distribution would result in a fa:
decrease iz 1 to account for the large gradientdn Despite the very large, i.e., more thar
three orders of magnitude, spread in values of the solution variable (see Fig. 6) coL
with the criterion employed for convergence as given by Eq. (48), the relative error turr
be less than 3% (see Fig. 7). This range of error can be decreased further by a more ef
node distribution and/or through a tighter convergence criterion. Again the observed p
are numerical artifacts due to the Gauss—Seidel iterative method.

6. CONCLUSIONS

In this paper, we have presented a new discretization scheme for the two-dimens
anisotropic drift-diffusion equation with inhomogeneous coefficients, under steady s
conditions. In the diffusion dominated case, a family of schemes is proposed, which
serves the limiting behaviour of the anisotropic elliptic equation and yields an M-mat
This serves to guarantee a stable oscillation-free solution as well as use of standard ite
solvers. The scheme has been extended to the generalized inhomogeneous drift-diff
equation whereby we have incorporated the flow of upwind information using a rote
difference method for the drift component. The resulting system of equations satisfie:
requirements for an M-matrix. The scheme is validated by comparison with test probl
whose exact solutions are known. Good agreement has been observed within phys
realistic limits.
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